The Orchid School Weekly Syllabus Overview 2015- 2016 Std : XII Subject : Math				
Month	Lesson / Topic	Expected Learning Objective	Activities/ FAs Planned	Remark
JUNE	Continuity and differentiability, exponential differentiation	Most students will be able to understand the concept of exponential differentiation and solve sample examples based on the same	ex 6.4 and 6.5 NCERT	
	Continuity and differentiability,logarithmi c differentiation	Most students will be able to understand the concept of logarthmic differentiation and solve sample examples based on the same	Ex 6.6 and 6.7 NCERT	
	Continuity and differentiability,derivative s of functions in parametric form.	Most students understand will be able tounderstand the concept of parametric differentiation and solve sample examples	Ex 6.7 and 6.8 NCERT	
	Second order derivatives,rolles and lagranges theorem	Most students understand the concept of rolles and lagranges theorem and solve sample examples	Miscelleneous exercises NCERT	
	Applications of derivatives, rate of change of quantities,tangents and normals	Most students will be able to understand the concept of applications of derivatives, rate of change of quantities,tangents and normals and solve numericals	NCERT 6.1 AND 6.2	
JULY	Applications of derivatives, maxima and minima, , increasing/decreasing functions	Most students will be able to understand the concept of applications of derivatives, maxima and minima, , increasing/decreasing functions solve sample examples based on the same	NCERT 6.2 AND 6.3	

	Applications of derivatives, approximation	Most students will be able to understand the concept of and solve the numericals based on applications of derivatives ,approximation	NCERT EX 6.3 AND 6.4
UT 1			
	Integration of a variety of functions by substitution Integration of a variety of functions by trigonometric functions,	Most students will be able to understand the concept of and solve the numericals based on integration of a variety of functions by substitution Integration of a variety of functions by trigonometric functions,	EX 7.1 , 7.2 , 7.3
JULY	Integration, integrals of particular functions, integration by partial fractions, integration by parts	Most students will be able to understand the concept of and solve the numericals based on integration, integrals of particular functions, integration by partial fractions, integration by parts	ex 7.4,7.5,7.6 NCERT
	Definite integrals,D.I by substitution,properties of the same	Most students will be able to understand the concept of and solve the numericals based on definite integrals,D.I by substitution,properties of the same	ex 7.7,7.8,7.9,7.10,7.11 NCERT
AUG	Applications of integrals, Applications in finding the area under simple curves, especially lines, arcs of circles/parabolas/ellipses (in standard form only),	Most students will be able to understand the concept of and solve the numericals based on applications of integrals,Applications in finding the area under simple curves, especially lines, arcs of circles/parabolas/ellipses (in standard form only),	ex 8.1 NCERT
	Applications of integrals, area between the two above said curves.	Most students will be able to understand the concept of and solve the numericals based on applications of integrals, area between the two above said curves.	ex 8.2 NCERT
	Relations and functions,Types of relations: Reflexive, symmetric, transitive and equivalence relations	Most students will be able to understand the concept of and solve the numericals based on relations and functions,Types of relations: Reflexive, symmetric, transitive and equivalence relations	

	Relations and functions,. One to one and onto functions, composite functions, inverse of a function. Binary operations. Differential equations,order and degree of DE, general and particular solutions of DE	Most students will be able to understand the concept of and solve the numericals based on relations and functions,. One to one and onto functions, composite functions, inverse of a function. Binary operations. Most students will be able to understand the concept of and solve the numericals based on differential equations,order and degree of DE ,general and particular solutions of DE	ex 9.1,9.2 NCERT	
	Differential equations,formation of DE,methods of solving first order first degree DE	Most students will be able to understand the concept of and solve the numericals based on differential equations,formation of DE,methods of solving first order first degree DE	ex 9.3,9.4 NCERT	
SEPT	Differential equations, s, homogeneous differential equations of first order and first degree. Solutions of linear differential equation	Most students will be able to understand the concept of and solve the numericals based on differential equations, s, homogeneous differential equations of first order and first degree. Solutions of linear differential equation	ex 9.5,9.6 NCERT	
	Vectors,Vectors and scalars,	Most students will be able to understand the concept of and solve the numericals based on Vectors, Vectors and scalars, magnitude and direction of a vector. Direction cosines/ratios of vectors. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector	ex 10.1 , 10.2 NCERT	
Term 1 Exam			1	

	Vectors components of a	Most students will be able to understand	Ex 10 3 10 / NCEDT	
	vectors, components of a	the expect of and ashes the summariant	LA 10.3 , 10.4 INCERT	
	vector, addition of vectors,	the concept of and solve the numericals		
	multiplication of a vector	based on Vectors, components of a vector,		
	by a scalar, position	addition of vectors, multiplication of a		
	vector of a point dividing a	vector by a scalar, position		
	line segment in a given	vector of a point dividing a line segment in		
	ratio. Scalar (dot) product	a given ratio. Scalar (dot) product of		
	of vectors, projection	vectors, projection		
	of a vector on a line.	of a vector on a line. Vector (cross) product		
	Vector (cross) product of	of vectors scalar triple product		
	vectors scalar triple	or vectors, sediar triple product.		
	reduct			
	product.			
	Three dimensional	Most students will be able to understand	Ev 11.1 11.0 NOEDT	
	Inree-dimensional	Most students will be able to understand	EX II.I , II.Z INCERI	
	Geometry, Direction	the concept of and solve the numericals		
	cosines/ratios of a line	based on Three-dimensional		
	joining two points.	Geometry, Direction cosines/ratios of a line		
	Cartesian and vector	joining two points. Cartesian and vector		
	equation of a line,	equation of a line, coplanar		
	coplanar	and skew lines, shortest distance between		
	and skew lines, shortest	two lines		
	distance between two			
	lines			
	Three-dimensional	Most students will be able to understand	ex 11.3 and miscelleneous NCERT	
	Geometry, Cartesian and	the concept of and solve the numericals		
	vector equation of a plane	hased on		
OCT				
	Angle botwoon (i) two lines (ii)			
	between (i) two intes, (ii)			
	two planes, (iii) a line and			
	a plane. Distance of a			
	point from a plane.			
	Lincor Drogromming	Most students will be able to understand	ay 10.1.10.0 NOEDT	
	Linear Programming,	Nost students will be able to understand	EX 12.1,12.2 NCERT	
	Introduction, related	the concept of and solve the numericals		
	terminology such as	based on Linear Programming,		
	constraints, objective	Introduction, related terminology such as		
	function, optimization,	constraints, objective function,		
	different types	optimization, different types		
	of linear programming	of linear programming (L.P.) problems,		
	(L.P.) problems,	mathematical formulation of L.P.		
	mathematical formulation	problems, graphical method		
	of L.P. problems, graphical	of solution for problems in two variables,		
	method	feasible and infeasible regions, feasible and		
	of solution for problems in	infeasible		
	two variables, feasible and	solutions, optimal feasible solutions (up to		
	infeasible regions, feasible	three non-trivial constrain		
	and infeasible			
	solutions optimal feasible			
	solutions (up to three non			
	trivial constrain			

NOV	Probability, Multiplications theorem on probability. Conditional probability, independent events, total probability, Baye's theorem. Probability, Random variable and its probability distribution, mean and variance of haphazard variable	Most students will be able to understand the concept of and solve the numericals based on Probability,Multiplications theorem on probability. Conditional probability, independent events, total probability, Baye's theorem. Most students will be able to understand the concept of and solve the numericals based on Probability, Random variable and its probability distribution, mean and variance of haphazard	ex 13.1 , 13.2 NCERT ex 13.3 13.4	
	Probability, Repeated independent (Bernoulli) trials and Binomial distribution.	Most students will be able to understand the concept of and solve the numericals based on Probability, Repeated independent (Bernoulli) trials and Binomial distribution.	ex 13.5 and miscelleneous NCERT	
	2. Inverse Trigonometric Functions Definition, range, domain, principal value branches. Graphs of inverse trigonometric functions. Elementary properties of inverse trigonometric functions.	Most students will be able to understand the concept of and solve the numericals based on 2. Inverse Trigonometric Functions Definition, range, domain, principal value branches. Graphs of inverse trigonometric functions. Elementary properties of inverse trigonometric functions.	NCERT EX 2.1	
DEC	2. Inverse Trigonometric Functions Definition, range, domain, principal value branches. Graphs of inverse trigonometric functions. Elementary properties of inverse trigonometric functions.	most students will be able to understand the concept of and solve the numericals based on 2. Inverse Trigonometric Functions Definition, range, domain, principal value branches. Graphs of inverse trigonometric functions. Elementary properties of inverse trigonometric functions.	NCERT Miscellaneous	
UT 2				

JAN		
FEB		
Final Exam		